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The Exact And Asymptotic Formulas
For The State Probabilities In Simple

Epidemics With m Kinds Of Susceptibles

by

If. Lacayo and Naftali A. Langberg

ABSTRACT.

A population of susceptible individuals partitioned into m groups

and exposed to a contagious disease is considered. It is assumed that an

individual's susceptiblity at time t depends on the number of susceptible

individuals at time t in his group, and on the total number of infective

individuals at time t.

The progress of this simple epidemic is modeled by an m-dimensional

stochastic process. The components of this stochastic process represent the

number of infective individuals in the respective groups at time t. Exact

and approximate formulas for the joint and marginal state probabilities are

obtained. It is shown that the approximate formulas are simple functions of

time while, the derivations of the exact formulas involve tedious computations.

Key words: simple epidemics, different levels of susceptibility,con-

vergence in distribution, exponential, negative binomial, and multinomial

distributions.

ACCESSION for
NTIS White Section

ODG Buff Section E3

UNANN0!1WUD 03
JUSTI ICATION

By
DISTMBUTIONIAVAILABIUtY OTS

Dist. AVAIL and/or SPECIA.



1. Introduction and Summary.

We say that a population of susceptible individuals (susceptibles),

exposed to a contagious disease, (disease) undergoes a simple epidemic

if the following four assumptions hold [Bailey (1975)].

(1.1) At each point in time at most one susceptible contracts the disease.

(1.2) Once a susceptible contracts the disease he remains contagious for

the duration of the epidemic.

(1.3) Individuals neither join nor do they depart from the population. And

(1.4) All interactions between a susceptible and an infective individual

(infective) are "equally likely" to result in an infection.

Gart (1968) models the progress of a simple yaws epidemic based on a

data set obtained in New Guinea. He notices that the susceptiblity level

of an individual depends on his previous history of yaws. Gart divides the

susceptibles into two groups: those with a positive yaws history, and those

with a negative yaws history. lie replaces, at least implicitly, Assumption

(1.4) by:

(1.5) All interactions between a susceptible that has a specified yaws

history and an infective are "equally likely" to result in an infection.

In this paper we follow Gart (1972) and consider a population of suscep-

tibles partittoned to m subpopulations, m = 2, 3, ... , and exposed to a disease.

We assume that the susceptibility level of an individual varies according to

his membership in the various subpopulations.

Let T be the first time there is at least one infective in each of the

th
subpopulations, n r be the number of susceptibles in the r- subpopulation

1". 01- 77 7
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at To, br be the number of infectives in subpopulation r at To, r = 1, ... ,

and let n = m nr. We describe the progress of the epidemic among suscepti-

bles by an m-dimensional stochastic process: X n(t) = [X n,l(t),...,X n,m(t)3,

tc[O,). The components of X (t) represent the number of infectives in the-n

respective subpopulations at time t measured from T0 . Although the infection

rates of the various subpopulations are not used explicitly we present them

for reference purposes.

Definition 1.1. Let r = 1, ..., m, and te[O,-). Then the infection

rate of subpopulation r at time t is given by

(1.6) tim h"1 P{Xn r(t+h) - xnr(t)=ljX(t)}.

We say that a population undergoes a simple Gart epidemic if Assumptions

(1.1) through (1.3) and the following one are satisfied.

(1.7) The infection rate of subpopulation r at time t depends on the total

number of infectives at time t, and on the number of susceptibles in subpop-

ulation r at time t, r = 1, ..., m, tE[O,-).

Note that Assumption (1.7) is the rigorous formulation of the statement: all

interactions between a susceptible that belongs to a specified subpopulation

and an infective are "equally likely" to result in an infection.

In Section 2 we construct a variety of m-dimensional stochastic pro-

cesses. These processes can be used to model the progress of simple Gart

epidemics among susceptibles. Section 3 contains formulas for the joint and

marginal state probabilities: P{X n,r(t)-b r=k ,rl,...,m}, and P{X n,r(t)-b rq),

r 1, ... , m, tc[O,-), where kl, ..., km, q{O,l,...). These formulas are

calculated without the traditional use of the differential equations associated



with the state probabilities. This is done by utilizing a formula for the

distribution function of a sum of independent exponential random variables

(rva's) given by Billard, Lacayo, and Langberg (1979).

Let I" ... , O C(O,w), and X (t) = Xl x (t). Gart (1968),

following the classical approach, assumes that the infection rates at time t

of tae subpopulations are givcn by

(1.8) r (nr+brX nr(t))Xn (t), r = 1, ..., m, tCl0,-).

These rates have the property, shown in Secvion 2, that the duration time of

the simple Gart epidemic tends to zero as n. - for t M 1, ..., m. To obtain

approximations to the joint and marginal state probabilities when nl, ... , nm

are sufficiently large we adjust the above rates, and assume that the infection

rates at time t of the subpopulations are given respectively by

-I
(1.9) nr 1r(nr+brnX (t))X (t), r M1, ... , , tc[O,-).r rrn,r n

In Section 4, we obtain, under Assumption (1.9), approximations to the quan-

tities: P(X n,r (t)-b rmkrrl,-,, PfX n,r (t)-br=q}, P{X n(m-12=ibe=q},

.Xn (t), EX n,r(t), VarX n(t)), and Var(X n,r(t)), when nl, ..., nm are

sufficiently large. These approximations are expressed as simple functions of

t while, the derivations of the exact values of these quantities involve com-

plicated computations, as we illustrate in Section 3.
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2. Model Construction.

In this section we construct a variety of m-dimensional stochastic

processes. These processes can be used to describe the progress of simple

Gart epidemics among susceptibles.

First, we introduce some notation. Let Tn, k th interinfection time,

be defined as the time that elapses between the f+k-h and t:e b+k infection,

kal, ..,n. Let S= J, Snk= k T kml,...,n, and S = Furter, let
nlO n 0 I k = nn+l 0*' ue

;n,o = o, and In,k' k a 1, ... , n, be rva's assuming values in the set {l,...,n).
The rva tn,k specifies the subpopulation membership of the b + k infective,

k a 1, ... , n. Finally, let I be the indicator function, and

n -k- 1 i(n or), k n 1, n, r = 1, ... , m. Note that
n,k,r r q=o n"q

Cn,k,r Ck , ..., n, r, k , ..., m.

For r - 1, ... , m, k a 0, ... , n, and te(O,-), the following event

equality holds.

n
(2.1) (X (t)-b rk) - U (S qt<S jq I(& .- r)-k).

n,r r qwk nq n,q+l' J-1 n, J

Thus, to construct the stochastic process X n(t) it suffices to determine the

distribution function of the random vector (rye) LTn,kEnk,kl,...,ni.

Next, we determine the distribution function of this rye. Let a(n,kj,r),

k - 1, ... n, j - 1, ... , nr, r m 1, ... , m, be positive real numbers. Assume:

(2.2) P(&n,k-rl an,q q=O....,k-1)

a(n,k,Cn,k,r r)tl. la(n,k,C n,k -l, ) k 0 0, ... , n,

r a 1, ... , u, and;

WOW"j
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(2.3) The conditional rva's {T n,k n,q q =O,...,k-1, k = 1, ..., n, are

independent exponentially distributed with means equal respectively to

{I a(n,k,C -.

Clearly, Assumptions (2.2) and (2.3) determine the distribution function of

the rye [Tn k,'n k,k=l,...,n].

Note that by the memoryless property of exponential rva's [Barlow,

Proschan (1975), p. 5b], Equation (2.1), and Assumptions (2.2), (2.31 the

infection rates at time t of the processes constructed in this section are

equal to a(n,Xn (t)-b+l,n r+b -X (t),r), r = 1, ..., m, te(O,-). Thus,n rr n~r

these processes can be used to describe the progress of simple Gart epi-

demics among susceptibles.

The classical model, considered by Gart (1968) and (1972), follows

by setting a(n,k,j,r) = ar (b~k-l)j. By Assumption (2.2) the duration time

of the classical simple Gart epidemic is equal to E{1 q - r,q,r1 -1
-li, -,)mla nq

Tnus, it is less than or equal to ( ain a )-E [(bq-1)(n-q+l)J . Conse-
1: tem t ql()

quently, the duration time of classical simple Gart epidemic tends to zero

as nt -- for e = 1, ..., in. In Section 4 we investigate the asymptotic

Dehaviour of simple Gart epidemic models determined by letting
-I

a(n,k,j,r) = nr 1 (b+k-l)j. Following Severo (1969) we can define

a(n,k,j,r) = ar n6 (b~k-l) 0j , 64E(--,-), 0, XcLO,), and thus, constructrr

extensions to the simple epidemic models used and motivated by him. In

particular for 6 = 0, 6 = A= 1/2, we get infection rates used by McNeil (1972)

to describe simple epidemic situations.



3. Formulas for the State Probabilities.

Let q, ki, ..., k m{O,...,n}, k = ki,... ,kmj, and k = ri r
Throughout we assume that 0 5 k 5 n. Further, let U, U2, ..., be a sequence

of independent exponential rva's with means equal to 1, and wl, w2p "''' be

a sequence of positive real numberL.

This section contains formulas for the joint and marginal state prob-

abilities: P n,k(t) = P{X n(t)-b=k, and Pn,qr(t) = P{Xn,r(t)-b rq,

r - 1, ..., m, tc(O,-). These formulas are calculated without the tradi-

tional use of the differential equations associated with the state probabil-

ities. Rather, we utilize an available formula for the distribution function

of a sum of independent exponential rva's. For the sake of completeness we

present this formula.

Theorem 3.1. LBillard, Lacayo and Langberg (1979), Theorem. ij. Let A

be a positive integer, and 4(j) = (-I) q

jl+...+ji=J q=l

j a 'M, 1 l,.... Then for te(0,).

(3.1) p(M. 1 4-1Uq1t} = I (j) (_t)/(j!) .

To aid in computing tie joint and marginal state probabilities we

introduce the following -otation. Let 'k =L '] to' -0 .. k

B { k: qI( =r)=k ,rl,...,m), and Ar,j,q= { ' "= I(t er)ql, jfq, q+l,...

By Equation (2.1) we obtain that for te(O,')

(3.2) P n,(t)

"L P (sn k'k t< Sn k +l 1nq q' qO,...k)P{&n,'q'q=O,...k)1 (kebk '

. . .. -¢ .. ... .
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and that

(3.3) P n,q,r(t)

,l~ P{S .' st<S n j L eu, .,}(E= .eoO,,.,j3 I(t cAou .J njl n,e el "e  n,ee rjq
-j

Thus, to compute Pn,k(t) and P n,q,r(t) it suffices to evaluate

P{g n,qm q=O ,...,k) and P{S n,kt<S n,k~l1 n ,q=O,... ,k}.

Now, we present formulas for these probabilities. Let

Dn k( q) = n - I- (=r), q = 1, ... , k + 1, and

n(n,k,t,q) f m a(n,q,iLk ( k,q),r), q = 1 k * 1.Iq r=1 ' "'''

First, by Assumption (2.2)

(3.4) P( n,qf q q=O,...,k

k I M I(Z q r)
11 [{n(nkkq)} II {a(n,q,D n,k,r(k q),r)} ]

qfl r=l

Next, let f k(il, ...,kt) be the density function of the

rva j I ,1 .U Then for k = 1, 2, .... and tc(O,w)

(3.S) ~ ~ ~ ~ ~ }~k, I 5=z~j(3.5) P 1 q q ql q q

t e -ok+l (t-u) f (J V. .. ~ u P I . A ' )
Sefk(l. ,u kU)du fi k1
0

Thus, by Assumption (2.3) and Theorem 3.1

II I I



(.)P{S !S I u uO...

(.)n,k n ,k.1l n,q q

e- rJn~kP!:,)t k= 0

j ! -jl"+njq-1 .~)(Ij1t3 n{((n,k, t j) +1 km n

kIc. j +1
*lH' (nl(n,k, k,q) ) q 1 :5 k < n.
qa 1

Consequently, the fortiulas for the joint and marginal state probabilities

can be obtained from (3.2) and (3.3) by subtitution.
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4. The Asymptotic Behaviour.

This section contains our main asymptotic results. All limits are

calulated as ne - for 4: = 1 ... ,

For tne sake of completeness we present two definitions.

Definition 4.1. Let &{l,2,...}, and pE(0,1). We say that tne rva Y

has a negative binomial distribution with parameters Z, and p, and write

Y \, NB(4:,p) if

(4.1) P{Y=ql = + q-l p(l-p)q, q = 0, 1,....

Definition 4.2. Let e, £e{1,2,...1, and yI, Ye e(0,l) such that

e= 1. We say that the rIe-t' e= ... ,1 e} has a multinomial distri-

bution with parameters t, Y1 P...) Ye, and write 'e MN(Z,yI , ,..,ye) if

e t. e
(4.2) P{w.=fj,j=l,...,e} = (e! 1iyj ) II '),

J "J... j=lJ j=1

m -st~l- a-l)] "I Yt) , NB b:e -a t

Let a = 1r=l ar' 0r(t) = e (l-e - )(1 -a r a Y(t) ' NB(be

Y (t) - NU(b,$ (t)), and W (K) , ,-N(k,ala , ... , a  ), r Is m.

k 1, 2, ..., tc(O,=).
-1

Assume throughout that a(n,k,j,r) = nr a (b+k-1)j, j = 1, ..., n
r r r

r = 1, ..., m, k = 1, ..., n, n = 1, 2, .... First, we show that for te(O,-)

(4.3) im Pn k(t) = P{Y(t)= -IkP{ (j=lk)=k),

(4.4) in P{Xn(t)-b=q} = P{Y(t)nq), and

(4.5) eim P n,q,r(t) = P(Y r(t)=q, r = 1, ..., m.

-* 
'  '  

. ... .2 . . .. "
+:+++ + = + + 't ,

-i . I I II I
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Next, we show that for t, 8E(0,-)

(4.6) tim E{X n(t)) E{Y(t)} B , and that

(4.7) Zim E{X n,r(t)1l = E{Y r(t)} a r = , .

In particular it follows from Statements (4.6) and (4.7) that for tE(O,-)

at
(4.8) tim EX n(t) = b(ea -1),

(4.9) tim Var{Xn(t)= b(e 2t-e a),
n

(4.10) Zim EX n,r(t) = b(( r(t)) -1), r = 1, ... , m, and

(4.11) tim Var{X n,r(t) } = A((r(t)) -  ( (t))) r = .. m

Note that tne approximate formulas given in Statements (4.3) through (4,5),

and in Statement (4.3) through (4.11) are indeed simple functions of time.

The following three lemmas are needed to prove Statements (4.3) through (4.5).

Lemma 4.1. Let kc{1,2,...}, and t .... , ZkE{l,...,m). Then

1' =l

m 1q=
(4.12) tim P{ n,q=t ,q=l, ...,k} = RI (a r )

r=l

Proof. Let t° = U. Then P{E n=4q,q=l,...,k) =

= R P{fn.q= q &n.j=jj=u,...,q-l1. Consequently the result of the lemma
q=l

follows by Assumption (2.2).11

Lemma 4.2. Let k({l,2,...}, Z1' .... kE{1,...,m}, and t - 0. Then

the sequence of conditional rva's: (S n,kln,q=Z ,q0,...,k-l}, n = 1, 2,

converges in distribution to the rva k a -Il(b+q-l)-IUoqvrq

74F_ V
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Proof. To prove the result of the lemma it suffices, by the Cramer-

Wold device [Billingsley (lu8), p. 49], to show that the sequence of con-

ditional rve's: L(Tn,1 ,...,Tn,kln,q=tq q=O,...,k-l1j, n = 1, 2,

converges in distribution to the rye {a-1b-IU 1 ,...,a- (b+k-l) 1Uk).

The preceeding statement follows from Assumption (2.3). 11

Lemma 4.3. Let d, k, be two positive integers. Further, let

{Ul:d+kl. ... ,Ud+kl:d+k_1 be the order statistic of a sample of size d + k - 1
taken from the population U. Then the rva's z=l(d+q-l)- aan U

po o 1 q k:d+k-l

are equal in distribution.

Proof. Let U3,d+k-1  0 0. Then the spacings: Uk-q+l:d~k-l k-q:d+k-l,

q = 1, ..., k, are independent exponentially distributed rva's with means

respectively equal to (d+q-l)' l [Barlow Proschan (1975) p. 592. Thus, the

rva's j~k(d+q-l) - 1 Uq and zk=I{U k-ql:d k-Uk d_ are equal in distri-

bution. To complete the proof of the lemma we note that

iku{Uk q_~klUk I~ = IU
q = k-q+l:d+k-l k-q:d+k-l k:d+k-lI'

We are ready now to prove Statements (4.3) through (4.5). First, we

prove Statement (4.3).

Theorem 4.4. Let kl, ..., kCO,1,... }, k = {k1,...,km), k = k

and tc(O,-). Then Zim Pn,k(t) = P{Y(t)=k}P{W M(k)=k).

Proof. Let Bk De defined as in Section 3, and let £ e Bk. Then by
m -1 kr

Leuma 4.1 tim P{&n~ =,ql,...,k} -n r a Further, by Lemmas 4.2,
ral

4.3, and equation (3.5) tim P(S n,k st<S n,kl+ nq q , q - O,...,k} =

p(k. .(b~q-l)- 1U 5t<.+l(b+q.1)-l ( -. b+k) -cbt
q) q q= q (k+l)e

~ ~ -~- -~ - I



12

Finally, we note that B k contains k!/( H k !) elements. Consequently, the
rzlr

result of the theorem follows from Equation (3.2). jj

Let tc(O,-), and Z M(t) = {Z1(t),...,Z (t)} be a rve such that

{ZI lZr(t)) ". MN(ImlZr(t),.a-l,...ia -1), and ImlZr(t) NB(o,e-at).

By Theorem 4.4 and a well known result LBillinsgley (1968), p. 16J we conclude,

Corollary 4.5. Let tE(O,-). Then the sequence of rye's X (t) - b,

n = 1, 2, ..., converges in distribution to the rye Z (t).-in

From Corollary 4.5 and the Cramer-Wold device we obtain,

Corollary 4.6. Let r = 1, ..., m, and tE(O,-). Then the two sequences

of rva's X n(t)-b, and X n,r(t)-b r, n = 1, 2, ..., converge in distribution to

1' I Zl(t) and Zr(t) respectively.

Now, we prove Statements (4.4) and (4.5).

Theorem 4.7. Let qe(O,1,..., r = 1, ..., m, and tc(O,). Then

(a) Zim P{X n(t)-b=ql = P{Y(t)=q), and (b) Zim P q,r(t) = P(Y r(t)=q).

Proof. Part (a) follows clearly from Corollary 4.6. To prove part (b)

it suffices by Corollary 4.6 to evaluate P{Z (t)=ql.r

It is well known that for k = 1, 2, ..., P{Zr (t)=qjjM=Zt(t)=k} =

kJ(aa-')q(lcici-1) k-q q = 0, ... , k. Titus, PZr (t)=q!

,-I[ -abt -cit )l qk .- -cit a -. ) )k-q

[q!(b-l)!j [(1-c I [(cLk q (b+k-l)'L(k-q),j (le ) r

= Eq!(b-l)!]'lecibt [(l-e-t)ara- ljq e -ub+q-ll.k  [(k-q)!J'l[u(l-e-at)(la a-l)j k-q du
0 = r

*(b.q-1) ((t) )b (l 8O(t))q I

- -,
- ........ ,
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V'owe r.iie tae convergence of tile rorents.

Theorem 4.8. Let t, OE(o,-). Then tim E{X n(t)} 8 = E(Y(t)}

Proof. First, we note that

(4.13) E{Xn(t)} 8  o f' y-iP{X n(t)>yldy =
0

= f Y y + of (b+z) 0-1P{Xn (t-)-b'z}dz

0 0

- b + l[(b+q) - (brq-l)']P{Xn(t)-b2q}.

zm -1
Next, for k = 1, 2, ... , r1nr Cn, , for q 1 1r 2 ,

b + q - 1 5 2bq. Thus, by Lemma 4.3

(4.14) P{X (t)-b2K} = P{S nk<t} I ,,= lq IU <2obt) =
n n , q q

(l-e' 2 obt); , k = 1, 2,....

Finally, we note that

(4.15) 1 t[(b+q) 0-(b+q-l) J(1 e- 2abt) q< ( 2b) a- a-e -2abt)q <q4=5 Lq= q  -e <.

Consequently, the result of the theorem follows by Corollary 4.6 and

the dominated convergence theorem LLotve (1963), p. 125]. H

Finally, we prove Statement (4.7).

Theorem 4.9. Let r = 1, ... , m, and t, BE(o,-). Then

tim E(X n,r(t)} = {Yr(t)) 8 .

Proof. Note that E(X n,r(t) =

nb r + 1q=1 L(br+q)o-(b r+q-l)O]P{X n,r(t)-br q, that by Inequality (4.14)

P{X n,r(t)-br2q) 5 P{Xn (t)-bWq} < (1-e-2abt)
q , q = 1, 2, ..., and that

2obt Or q 0l'e'2bt)q < .
i [ (br +q)'-(b r+q-1)0](1-e'2 b) q :9 (2brT)qq(-

Consequently, the result of the theorem follows by Corollary 4.6 and

the dominated convergence theorem. ]I

XxJ
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